Formulir Kontak

 

Gratis Bücher Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Gratis Bücher Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Ist Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili Ihre bevorzugte Lesung buchen? Ist Fiktionen? Wie geht es in Bezug auf vergangene Geschichte? Oder ist die beste Verkäufer Roman Ihrer Möglichkeit , Ihre zusätzliche Zeit zu befriedigen? Oder vielleicht die politische oder spirituelle Bücher suchen Sie zur Zeit? Im Folgenden gehen wir bieten Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili Buchsammlungen , die Sie benötigen. Viele Zahlen der Bücher aus vielen Branchen geliefert. Von Fiktionen für die wissenschaftliche Forschung sowie geistiger als auch hier entdeckt gesucht werden. Sie können nicht nicht lesen betonen Ihr genanntes Buch zu entdecken. Diese Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili ist unter ihnen.

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili


Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili


Gratis Bücher Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Warum müssen die Unannehmlichkeiten einer wählen , wenn es einfach ist? Erhalten Sie den Gewinn durch den Kauf Führung Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili unten. Sie werden sicherlich auf andere Art und Weise , einen Deal zu machen und erhalten führen Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili Wie zu erkennen, heutzutage. Soft - Datei der Bücher Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili kommen , um mit den Zuschauern beliebt. Bist du eine von ihnen? Und auch ein, wir bieten Ihnen die neue Zusammenstellung von uns, die Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili.

Fühlen Sie sich müde, nachdem einige Aufgaben in Urlaub zu tun bekommen Sie Entspannung für einige Momente haben. Es wird sicherlich zusätzlich helfen Ihnen, die Ladezeit zu erfüllen. Wenn Sie Ihre Zeit für Entspannung zu schätzen wissen konnten und blicken auch das Panorama um dich herum, ist es die beste Zeit zusätzlich das Lesen zu haben. Ja, Buch Check-out wird ein extrem hervorragendes Konzept jetzt zu tun. Allerdings haben Sie sind ungewöhnlich fühlen sich nicht bestimmtes Buch zu bringen?

Vergiss es! Nun, in dieser modernen Zeit, können Sie die Bücher aus vielen Quellen erhalten. Nein sollte die Buchläden gehen sowie um die Stadt zu Fuß, können Sie Buch entdecken. Hier ist die Internet-Seite, die alle hervorragende Bücher hat zu sammeln. Man konnte es in den weichen Daten bekommen und es verwenden, um zu überprüfen. Natürlich Ihre Reiter und auch Computersystem landet große Gadget zu sein Führer zu speichern. Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili ist die beste Überweisung Sie in dieser Zeit zu begleiten. Es wird sicherlich helfen Ihnen, die Freizeit während Reisen zu begleiten.

Nach dem Abgleich durch das Lesen Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili der Freizeit können Sie trennen, was Sie sicherlich für die Fluchten erhalten wird. Das ist nicht nur das Home-Entertainment, aber Sie werden auf jeden Fall erhalten auch die brandneuen Know-how sowie Informationen aktualisiert. Dieses Buch wird auch empfohlen, denn es wird sie nicht unterbrechen mit so schwierigen Sache zu entdecken. Es wird sicherlich machen Sie mit der Lektion angenehm jedes Mal haben Sie es zu gewinnen. Leicht und einfach zu lesen und zu verstehen machen viele Leute gern diese Art von Buch sind.

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Über den Autor und weitere Mitwirkende

Sebastian Raschka verfügt über jahrelange Erfahrung in der Python-Programmierung und leitete mehrere Seminare über praktische Data-Science-Anwendungen, Machine Learning und Deep Learning u.a. auf der SciPy-Konferenz. Vahid Mirjalili erforscht Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten (»maschinelles Sehen«) am Fachbereich für Informatik und Ingenieurswesen an der Michigan State University.

Produktinformation

Broschiert: 584 Seiten

Verlag: mitp; Auflage: 2. überarbeitete Auflage 2018 (22. Dezember 2017)

Sprache: Deutsch

ISBN-10: 3958457339

ISBN-13: 978-3958457331

Größe und/oder Gewicht:

16,9 x 3,2 x 23,8 cm

Durchschnittliche Kundenbewertung:

5.0 von 5 Sternen

2 Kundenrezensionen

Amazon Bestseller-Rang:

Nr. 100.090 in Bücher (Siehe Top 100 in Bücher)

Ich hatte bereits die 1. Auflage von Sebastian Raschka rezensiert und gelobt. Ich nutze das Buch, nun in der zweiten Auflage, für meine Lehre im Bereich Data Science / Machine Learning. Die zweite Auflage ist überarbeitet und vom hinzugekommenen Co-Author, Vahid Mirjalili, um weitere Kapitel ergänzt worden. Die neuen Kapitel erklären die künstlichen neuronalen Netze noch mehr im Detail und führen - erst mit Code und dann mit Prinzip-Erklärungen - in TensorFlow ein.Der große Vorteil des Buches ist der richtige Mix aus mathematischen Erklärungen, Erklärungen mit Programmierbeispielen ohne Bibliothek (abgesehen von numpy, pandas...) und Programmierbeispielen mit den ML-Bibliotheken Sklearn und (nun ab der 2. Auflage) TensorFlow.Sehr gut! Klare Empfehlung!

Ich habe bereits die erste Auflage des Buches gelesen und hab jetzt auch die zweiteAuflage gelesen, und konnte mir einen Einblick darüber machen, was sich soalles verändert hat.Was steht drin------------------Die zweite Auflage unterteilt sich in 16 Kapiteln, die insgesamt 585 Seiten umfassen.Im Vergleich zur Vorauflage sind drei Kapitel und über 150 Seiten dazu gekommen.Die ersten Kapitel beginnt mit den Grundlagen des maschinellen Lernens. So wirdzu Beginn auf die drei verschiedenen Arten des Lernens eingegangen und an Hand vonBeispielen erläutert. Anschließend geht es zügig weiter und man programmiert denersten Lernalgorithmus. Im dritten Kapitel wird in die Bibliothek scikit-learn eingeführt,womit weiterführende Lernalgorithmen implementiert werden. Im vierten und fünftenKapitel geht es anschließend um die Datenvorverarbeitung sowie die Datenkomprimierung.Die ersten fünf Kapitel dienten dazu die Grundlagen zu vermitteln. Ab dem sechstenKapitel geht es an die tiefergehenden Themen, die allerdings ebenfalls für einerfolgreiches Einsetzen von Machine Learning Verfahren in der Praxis benötigt werden.Das sechte Kapitel behandelt etwa die Best Practices zur Modellbewertung sowiedie Abstimmung von Hyperparameter. Weiter geht es im siebten Kapitel mit der Kombinationverschiedener Modelle für das Ensemble Learning. Das achte Kapitel beinhaltetein Praxisbeispiel um die Stimmungslagen zu analysieren, wo Verfahren des NaturalLanguage Processings verwendet werden.Während in der ersten Hälfte des Buches vor allem „einfache“ Skripte geschriebenwerden, wird sich im neunten Kapitel mit einem Praxisbeispiel beschäftigt, wie maneine Webanwendung schreibt, die ein Machine-Learning-Modell eingebettet hat. Daszehnte Kapitel befasst sich anschließend mit der Vorhersage stetiger Zielvariablendurch Regressionsanalyse gefolgt vom 11. Kapitel zur Clusteranalyse mit nichtvorher klassifizierten Daten. Im zwölften Kapitel geht es anschließend um die Implementierungeines künstlichen neuronalen Netzes.Ab dem 13. Kapitel beginnen die neuen Kapitel, die nicht in der ersten Auflagevorhanden waren. So erfolgt in diesem Kapitel die Einführung in TensorFlow. Dabeiwird sowohl auf TensorFlow als auch auf die Bibliothek Keras eingegangen. Währenddas Kapitel eher als Einstieg in TensorFlow diente, geht es im 14. Kapitel um diedetaillierte Funktionsweise von TensorFlow. Das Buch schließt mit einem Kapitelüber die Klassifizierung von Bildern, sowie einem Kapitel über die Modellierungsequenzieller Daten durch rekurrente neuronale Netze ab.Kritik------Das Buch ist im Vergleich zur ersten Auflage noch umfangreicher geworden. Das bereitsdicke Buch ist also noch dicker geworden, durch die Hinzunahme von weiteren drei Kapiteln.Die ersten zwölf Kapitel sind im wesentlichen gleich geblieben, zumindest habeich keine sehr großen Änderungen beim drüberlesen feststellen können. Interessanterwaren da die neuen Kapitel, die sich endlich mit TensorFlow ausseinandersetzen,was heutzutage ja schon der Defacto Standard sein dürfte. Das Buch ist definitivnichts für Einsteiger. Um möglichst wenig separat nachlesen zu müssen, ist es sehrvorteilhaft und empfehlenswert schon Erfahrungen in der Entwicklung mit Pythonzu besitzen. Aus dem Bereich des Machine Learnings sind ebenfalls Vorkenntnissesinnvoll, aber nicht zwangsläufig notwendig.Das Buch ist von zwei Wissenschaftlern geschrieben und das merkt man auch. So sindviele Formeln enthalten, die ich garnicht erst versucht habe, nachzuvollziehen.Am allgemeinen Verständnis hat es daran aber auch nicht geschadet, sodass man diesegetrost überspringen kann, sofern man höhere Mathematik nicht gewohnt ist.Ich für meinen Teil konnte aus diesem Buch diverse Informationen herausziehen dieich auch in der Praxis anwenden konnte. So konnte ich viele Informationen und Beispielefür meine Masterarbeit verwenden, wo es ebenfalls um die Anwendung von Machine LearningVerfahren ging. So brachte das Buch eine umfassende Hilfestellung von derDatenvorverarbeitung über die Implementierung, Testen und Validierung der Ergebnisse.Ein Punkt finde ich bei diesem Buch aber verbesserungswürdig: Die Nutzung von Kerasund TensorFlow erfolgt erst in den „neuen“ Kapiteln und nicht in den vorherigen.Dort wird noch scikit-learn verwendet. Für das Beibringen von den Grundlagen istdies zwar auch in Ordnung. Einfacher wäre es aber, auch dort bereits TensorFlowund Keras zu verwenden, damit man als Leser sich nicht gleich mit zwei bzw. dreiBibliotheken beschäftigen muss, wenn scikit-learn nicht in der Praxis am Endeverwendet werden soll.

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili EPub
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Doc
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili iBooks
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili rtf
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Mobipocket
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Kindle

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF

Total comment

Author

hana ainisain

0   komentar

Cancel Reply
").append(t.replace(c, "")); var r = n.find("a.blog-pager-older-link"); if (r) { s = r.attr("href") } else { s = ""; o.hide() } var i = n.find(u).children(".main-wrap-load"); e(u).append(i); var f = $(".widget.Blog .post-thumbnail"); f.each(function () { $(this).attr("src", $(this).attr("src").replace(/\/s[0-9]+(\-c)?\//, "/s400-c/")) }); e(u).isotope("insert", i); setTimeout(function () { e(u).isotope("insert", i) }, 1e3); o.find("img").hide(); o.find("a").show(); a = false }) } function n() { if (_WidgetManager._GetAllData().blog.pageType == "item") { return } s = e("a.blog-pager-older-link").attr("href"); if (!s) { return } var n = e(''); n.click(t); var i = e(''); o = e(''); var u = $("#fixed_s ul li.text-234 "); o.append(n); o.append(i); u.append(o); e("#blog-pager").hide() } var r = "https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhW4bCfXiHkjHpH1OHHjZwvIbkXsLGvfy9SUIBjSZS9lDBTFvbn4W9O31aNoakCx6dvqdOyc8tOFXncV9wZNsSSK8HOIwWtIgpoGGVwSsI8GsCR1toPZC7A4oQVJ4vxmW6t1TKY8WLAdQ4/s1600/loader.gif", i = "no result"; var s = "", o = null, u = "#container", a = false, f = e(window), l = e(document), c = /)<[^<]*)*<\/script>/gi; e(document).ready(n) })(jQuery) })() //]]>